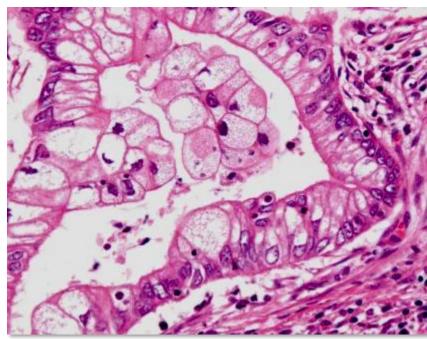
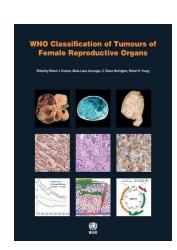

What is appropriate adjuvant therapy for gastrictype mucinous carcinoma of the uterine cervix?


Shin Nishio

What is Gastric Adenocarcinoma of the Cervix (GAS)?

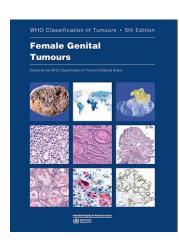
- The newly defined HPV-independent mucinous carcinoma of the cervix ¹⁻⁴
- Accounts for about 20-25% of all cervical adenocarcinomas ¹⁻⁴
- Prevalent in the 40s, 80% are well-differentiated ¹⁻⁶
- It is refractory to treatment and has a poor prognosis ⁵⁻⁶
 - Kojima A, et al. Am J Surg Pathol 2007; 31: 664-72.
 - Kusanagi Y, et al. Am J Pathol 2010; 177: 2169-75.
 - B. Park KJ, et al. Am J Surg Pathol 2011; 35: 633-46
 - Houghton O, et al. Histopahology 2010; 57: 342-50
 - 5. Kojima A, et al. Int J Gynecol Cancer 2018; 28: 99-106
 - 6. Nishio S, et al. Gynecol Oncol 2019; 153:13-19

Histopathology of GAS

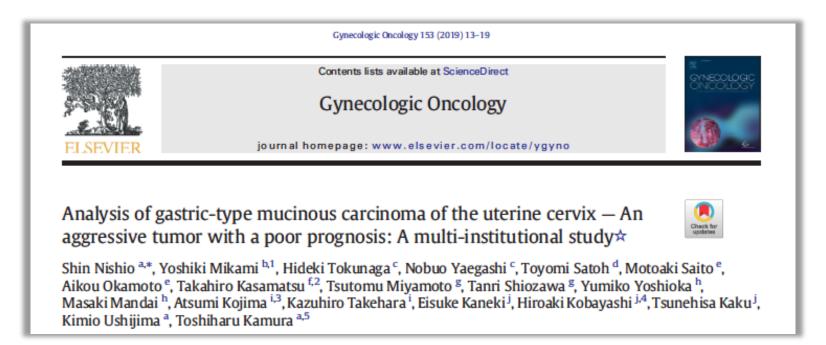

Morphologic Criteria

- Abundant cytoplasm
- Clear or pale eosinophilic
- Distinct cell borders

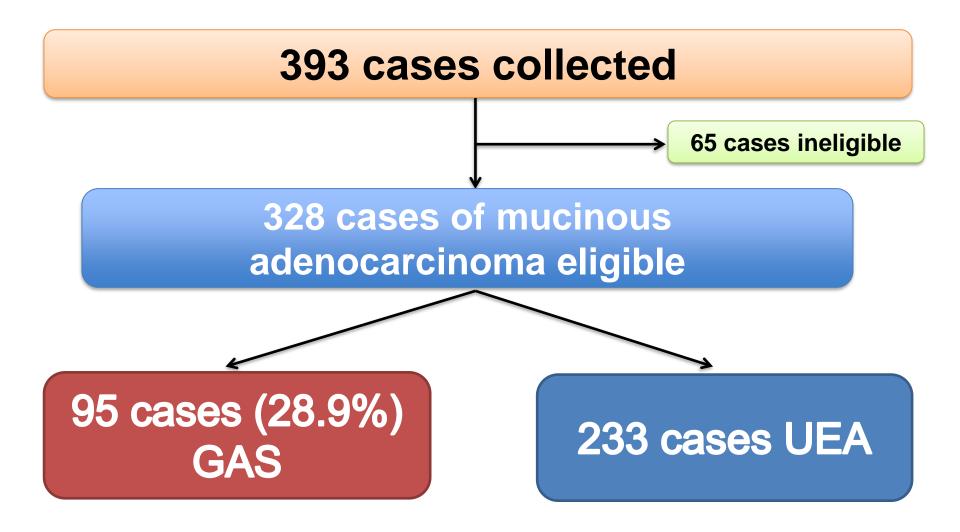
Kojima A, et al. Am J Surg Pathol 2007; 31: 664-672.


Adenocarcinoma of the Cervix WHO 2014

- Usual-type adenocarcinoma (UEA)
 - Villoglandular (pattern)
- Mucinous adenocarcinoma
 - ➤ Gastric (includes Minimal Deviation Adenocarcinoma: MDA)
 - Intestinal
 - ➤ Signet-ring cell
- Endometrioid adenocarcinoma
- Clear cell adenocarcinoma
- Serous adenocarcinoma
- Mesonephric adenocarcinoma


Adenocarcinoma of the Cervix WHO 2020

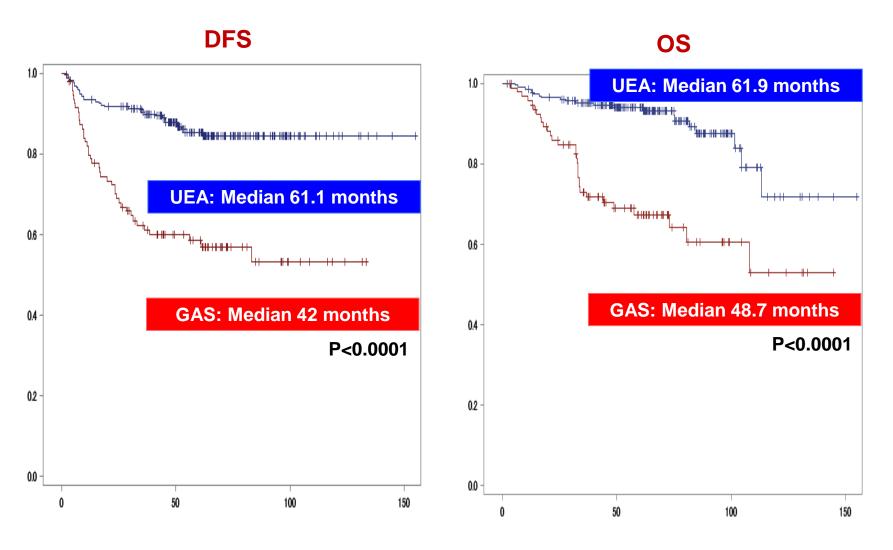
- Adenocarcinoma NOS
- Adenocarcinoma, HPV-associated
- Adenocarcinoma, HPV-independent, gastric type
- Adenocarcinoma, HPV-independent, clear cell type
- Adenocarcinoma, HPV-independent, mesonephric type
- Adenocarcinoma, HPV-independent, NOS
- Endometrioid adenocarcinoma NOS



A Cohort Study of Gastric-type Adenocarcinoma (GAS) of the Uterine Cervix

Multi-institutional Study by Gynecologic Cancer Study Group of the Japan Clinical Oncology Group (JCOG)

Study Schema 1

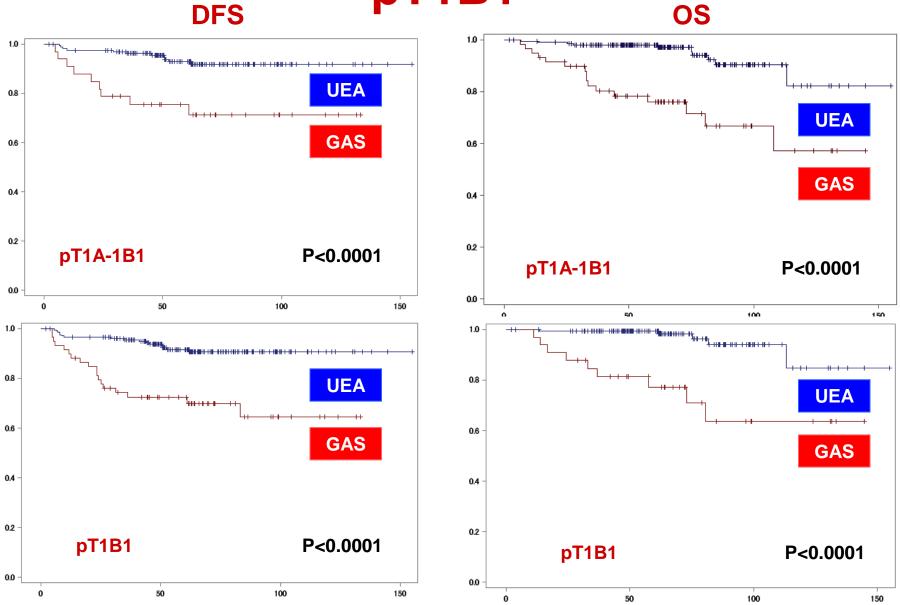

Comparison with GAS and UEA, clinicopathological factors

Factor	Histo GAS	ology UEA	P-value
pT Stage IA IB1 IB2 IIA IIB	4 33 22 12 24	18 165 21 10 19	P<0.0001
Tumor diameter <40mm ≥40	50 45	189 44	P<0.0001
Stromal invasion <2/3 ≥2/3	38 57	183 50	P<0.0001
LVSI Present Absent	63 32	71 162	P<0.0001

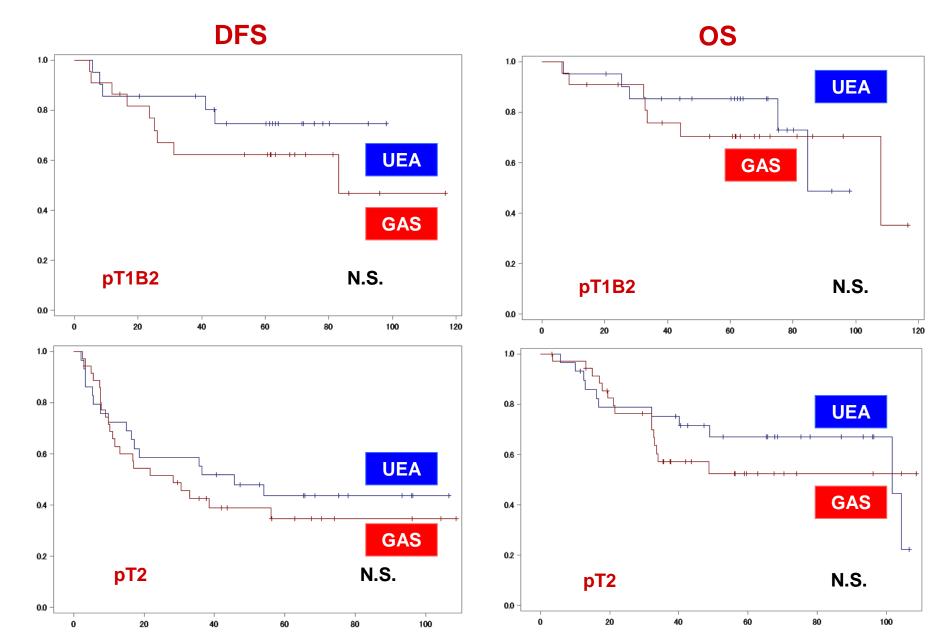
Comparison with GAS and UEA, clinicopathological factors (cont'd)

Factor	Hist GAS	ology UEA	P-value
Parametrial invasion Present Absent	25 70	17 216	P<0.0001
Lymph node Mets* Present Absent	33 57	33 192	P<0.0001
Differentiation* Well Moderate, Poorly	66 23	167 42	P=0.2716
Ovary Mets Present Absent	5 90	3 230	P=0.0481
Ascites cytology* Positive Negative	10 77	8 197	P=0.0136

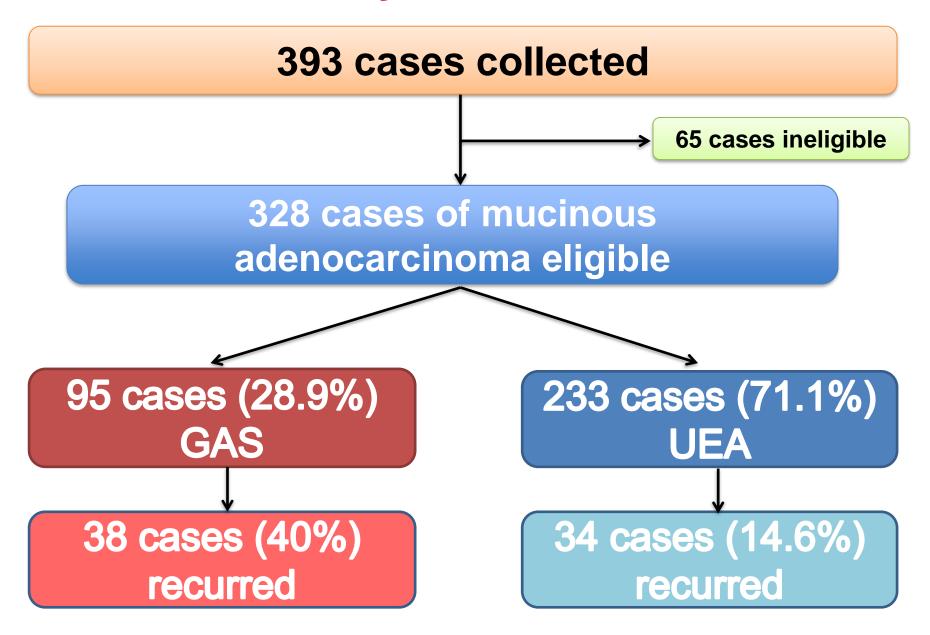
Kaplan-Meier Disease-free survival (DFS) and Overall survival (OS)



Nishio S, et al. Gynecol Oncol 2019; 153: 13-19


The effect on survival by multivariate analysis

Factor	P-va	alue	Hazard	l Ratio	95%CI	
Factor	PFS	OS PFS OS		os	PFS	os
Tumor diameter	P=0.0001	P<0.0001	3.406	4.378	1.824- 6.361	2.105- 9.107
Parametrial invasion	P<0.0001	P=0.0035	3.461	2.885	1.864- 6.428	1.416- 5.879
Lymph node Mets	P=0.0064	P=0.0079	2.286	2.48	1.262- 4.14	1.269- 4.847
Differentiation	P=0.0003	P=0.0015	3.031	3.057	1.665- 5.515	1.535- 6.09
Ovary Mets	P<0.0001	P<0.0001	9.173	12.178	3.349- 25.123	4.178- 35.494
GAS	P=0.0032	P=0.001	2.361	3.034	1.333- 4.182	1.566- 5.877


Survival curve of pT1A-1B1 and pT1B1

Survival curve of pT1B2 and pT2

Study Schema 2

Site of Recurrence*

Site	GAS	UEA
Brain	1	0
Lung	10	9
Liver	2	3
Peritoneum	3	1
Bone	2	0
Abdominal LYN	6	9
Pelvic LYN	6	7
Pelvis	8	5
Vaginal cuff	10	9

*Duplicated cases included

Site	GAS	UEA
Local site (L)	15	11
Distant site (D)	15	19
L+D	8	4

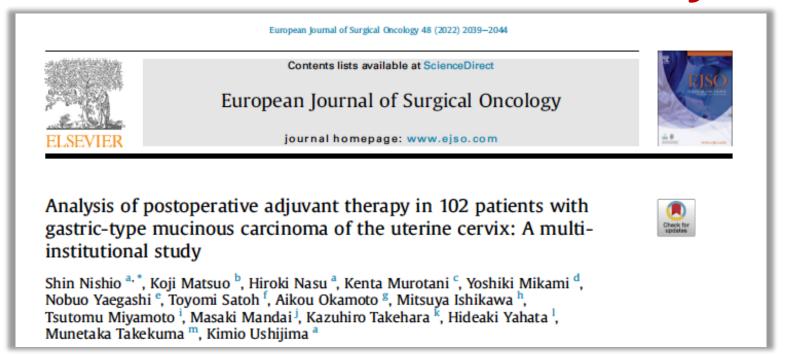
No significant difference between the groups

Response Rates for Chemotherapy by Histologic Type

Subtype	Res	Response to CT (RECIST Criteria)				
Sastyps	CR	PR	SD	PD	Response rate	
GAS (n=19)	2	5	3	9	36.8% \ *	
UEA (n=25)	3	5	5	12	32.0%	

**P*=*N.S.*

Response Rates for Radiotherapy by Histologic Type


Subtype	Res	Response to RT (RECIST Criteria)					
Castype	CR	PR	SD	PD	Response rate		
GAS (n=12)	1	5	0	6	50.0% _{\ *}		
UEA (n=11)	4	5	1	1	81.8%		

*P<0.001

Summary

- Among 328 endocervical adenocarcinomas, a total of 95 (28.9%) tumors were re-classified as GAS based on the novel criteria.
- As compared with UEA, GAS was significantly associated with a bulky mass, deep stromal invasion, lymph-vascular invasion, parametrial invasion, ovarian metastasis, positive ascitic cytology, pelvic lymph node metastasis, and pT factor, but was not correlated with tumor differentiation.
- DFS and OS were lower among patients with GAS compared to those with UEA.
- When stratified according to stage, patients with pTIA-IB1 adenocarcinoma had poorer outcomes, but the difference between groups with pTIB2 or more was not significant.

Analysis of postoperative adjuvant therapy in 102 patients with gastric-type mucinous carcinoma of the uterine cervix: a multi-institutional study

Background

- The standard treatment for early-stage cervical cancer is radical hysterectomy or radiotherapy.
- In more than 80% of institutions in Japan, radical hysterectomy is the primary treatment for patients with stage IB1 and IIA1 cervical cancer¹⁵.
- Adjuvant radiotherapy or concurrent chemoradiotherapy (CCRT) is recommended for patients with intermediate- or high-risk factors¹⁶⁻¹⁹. However, these strategies may not reduce distant metastasis and can cause severe gastrointestinal and urinary toxicity^{20,21}. To avoid adverse events associated with adjuvant CCRT, many Japanese gynecologic oncologists administer chemotherapy²².

To investigate the efficacy of adjuvant therapy for GAS

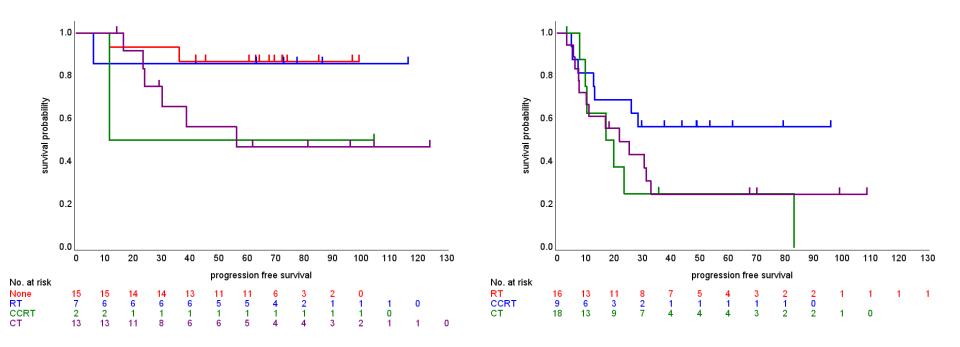
Risk classification for postoperative relapse of cervical cancer (JSGO)

Low-risk group: Patients who satisfy all the following criteria:

- 1. Small cervical mass
- 2. Negative pelvic lymph node metastasis
- 3. Negative parametric invasion
- 4. Shallow cervical stroma invasion
- 5. Negative vascular invasion

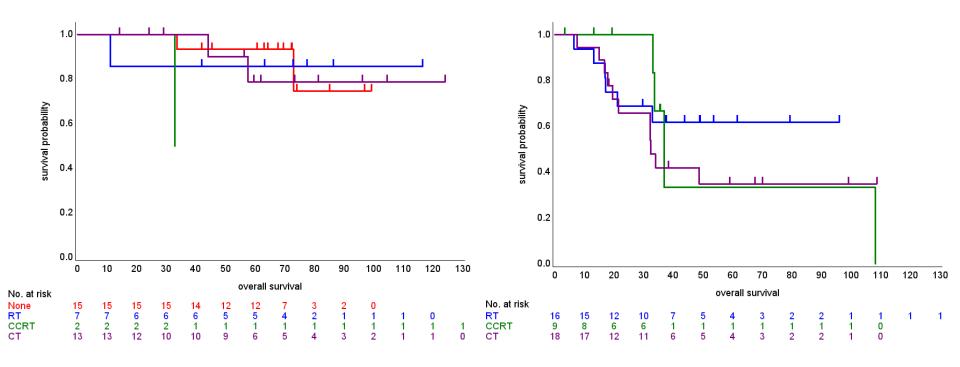
Intermediate-risk group: Patients with negative pelvic lymph node metastasis and negative parametric invasion that satisfy any of the following criteria:

- 1. Large cervical mass
- 2. Deep cervical stromal invasion
- 3. Positive vascular invasion

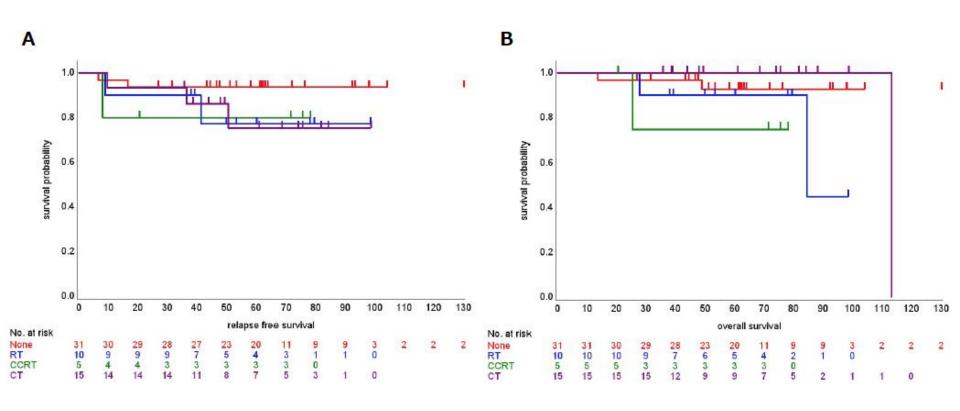

High-risk group: Patients who satisfy either of the following items:

- 1. Positive pelvic lymph node metastasis
- 2. Positive parametric invasion

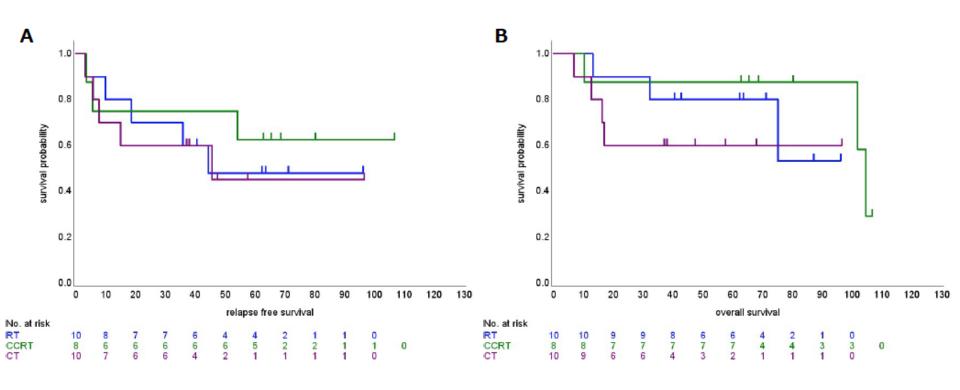
Type of adjuvant therapy


	None	RT	CCRT	СТ	Total
Low-risk	16	0	0	1	17
Intermediate -risk	17	7	2	11	37
High-risk	6	15	9	18	48

Progression-free survival in the intermediate-risk group and in the high-risk group


PFS in the intermediate-risk group and in the high-risk group (P = 0.141 and P = 0.169, respectively)

Overall survival in the intermediaterisk group and in the high-risk group



OS in the intermediate-risk group and in the high-risk group (P = 0.593 and P = 0.496, respectively)

PFS and OS in the intermediate-risk group with UEA

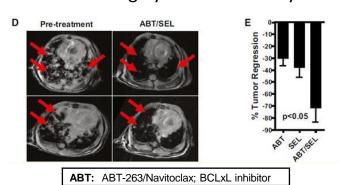
PFS and OS in the high-risk group with UEA

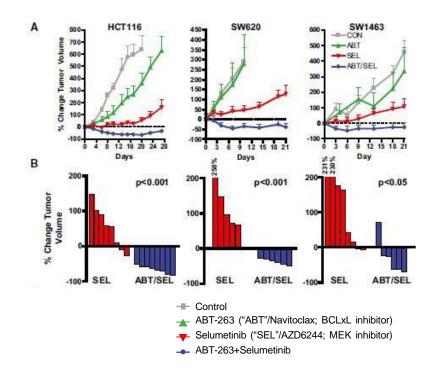
Summary of genomic profiling in GAS

Gene	%
TP53	32–74
CDKN2A	18-67
KRAS	17-36
SLX4	10-36
STK11	10-33
ARID1A	20-29
BRCA2	10-21
PTEN	20
PIK3CA	7-18
ELF	7-18
ERBB2	6-15
ERBB3	9–15
SMAD4	9–15
FGFR4	14
GNAS	9-11

Summary

- In conclusion, the prognosis of GAS was again confirmed to be poor, even in cases of early-stage cancer and following surgical resection.
- Notably, postoperative <u>adjuvant</u>
 <u>chemotherapy</u> is associated with a <u>poor</u>
 <u>prognosis</u>.
- In the future, the use of targeted molecular therapies that take genetic background into account may help to achieve better clinical outcomes among patients with cervical carcinomas.

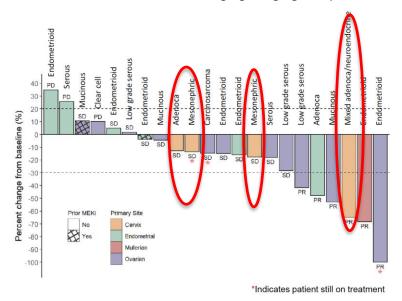

Target therapy for RAS

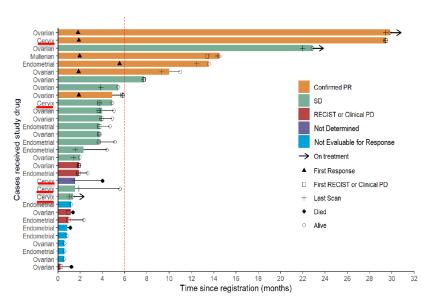

Activity of combination trametinib/navitoclax in patients with *RAS*-mutated gynecologic (GYN) cancers in a Phase 1/2 study

Preclinical data support synergistic activity between concurrent MEK and BCLxL inhibition

- BCLxLi + MEKi combination reduced tumor burden in 3 xenograft models of KRAS mutant colon cancer compared to either agent alone
- Similar efficacy in a <u>syngeneic</u> KRAS mutant lung cancer model
- Remissions were highly durable in many mice

SEL: Selumetinib; MEK inhibitor





Clinical Activity

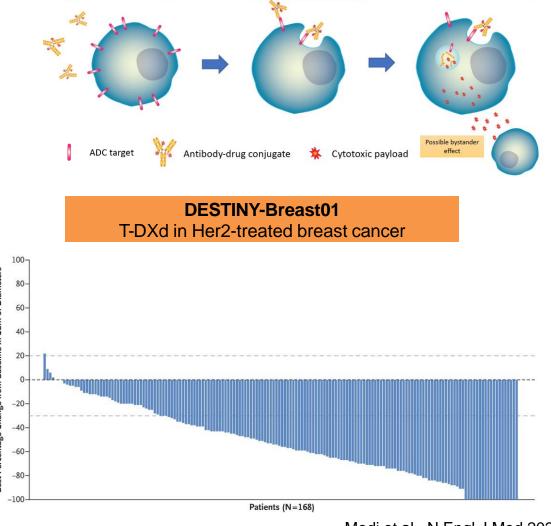
	Part 1/Phase Ib Dose Escalation		
	(N=7)	(N=24)	(N=31)
Best Overall Response			
Confirmed PR	1 (14.3%)	5 (20.8%)	6 (19.4%)
SD	4 (57.1%)	9 (37.5%)	13 (41.9%)
PD	0 (0%)	4 (16.7%)	4 (12.9%)
Not Determined*	0 (0%)	1* (4.2%)	1 (3.2%)
Not Evaluable	2 (28.6%)	5 (20.8%)	7 (22.6%)

^{*}Patient's restaging imaging was performed without contrast and was deemed non-evaluable by RECIST criteria

Median PFS: 3.9 months (95% CI 3.7-13.4) PFS at 6 mos: 36.4% (95% CI 16.9-56.2%)

Median DOR (in responders): 9.5 months (range 3.9-27.6)

Liu J, et al. SGO 2022


Target therapy for HER2 Trastuzumab deruxtecan (T-DXd)

ADC identifies target

expressed on cell

- Target: HER2
 - Ovarian cancer: 11-66%¹
 - Uterine cancer: 17-30% (amp); up to 61-80% with expression²
 - Cervical cancer: 1-12%³
- Payload:exatecan derivative (novel topo I inhibitor)
- Linker: Cleavable tetrapeptide linker

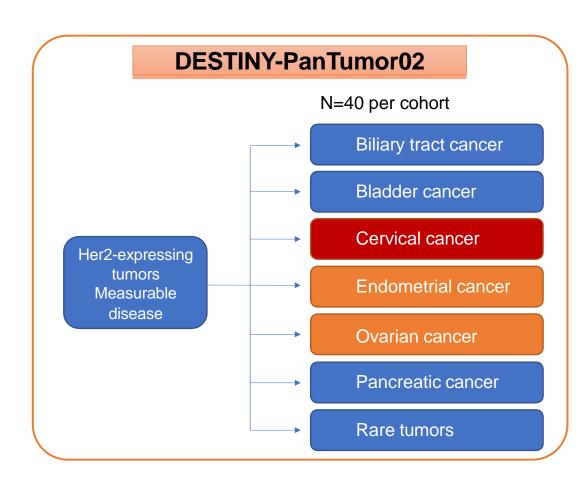
¹Luo et al., *PLoS One* 2018 ²Diver et al., *Oncologist* 2015 ³Oh et al., *Oncotarget* 2015

ADC binds target and

internalized

Cytotoxic payload

released


Ongoing trials of T-DXd in gynecologic malignancies

DESTINY-PanTumor02

 Phase 2, open-label trial of T-DXd for selected Her2- expressing tumors

ETCTN 10355

- Phase I study of DS-8201a in combination with olaparib in Her2expressing malignancies
- Expansion cohorts in gyn malignancies

